The Impact of Batteries on the Environment: Challenges and Risks

Batteries are an essential part of modern life. They power smartphones, laptops, electric cars, and many other everyday devices. However, their use comes with serious environmental consequences, especially when they are not properly disposed of (FOŚ, 2024, Renovables Verdes, 2024, GIOŚ, 2023, EEA, 2021, Nriagu, 1989). One of the most pressing issues is battery pollution in municipal waste, which can lead to soil, water, and air contamination.

The Chemical Composition of Batteries and Its Consequences

Batteries contain heavy metals and chemical substances that can be toxic to the environment and human health (Bernardes et al., 2004, ERM, 2006). The most commonly used materials include:

Batteries in Municipal Waste – A Hidden Threat

It is estimated that billions of batteries are used worldwide every year. Unfortunately, a large portion of them ends up in landfills or is incinerated in municipal waste facilities, leading to the following issues (Ekobezkantów):

  • Soil and water contamination – chemicals from batteries can penetrate the soil and subsequently reach groundwater, causing long-term pollution (Bernardes et al., 2004, Yang et al., 2021).
  • Emission of toxic gases – burning batteries can release heavy metals and dioxins into the atmosphere, negatively impacting air quality (ERM, 2006, USEPA, 2024).
  • Fire hazard – lithium-ion batteries can explode or catch fire when exposed to high temperatures or mechanical damage, posing a risk to waste processing plants (Yang et al., 2021, Lai et al., 2022).

How to Minimize the Negative Impact of Batteries?

  1. Proper Disposal and Recycling. In Europe, there is a system for collecting used batteries, with collection points available in stores, government offices, and educational institutions. Utilizing these points helps prevent environmental contamination (Bernardes et al., 2004, European Commission, 2021).
  2. Promoting Alternative Technologies. Scientists are developing more eco-friendly alternatives to conventional batteries, such as sodium-based batteries or organic supercapacitors (300Gospodarka.pl, Tarascon & Armand, 2001, Lai et al. 2022).
  3. Consumer Education and Awareness. Raising awareness about the dangers of battery waste can encourage responsible disposal and the selection of devices with longer battery life (Ekobezkantów, ERM,2006, UNEP, 2023).

Conclusion

Despite their indispensable role in modern society, batteries pose a significant environmental risk if not disposed of correctly. Implementing effective recycling systems, investing in greener technologies, and educating consumers are key to reducing the negative impact of used batteries on our planet.

👉 If you are a private individual from Poland and would like to find the nearest battery collection point, leave a comment – a special AI module will indicate the closest drop-off location for batteries. 🌱💚

👉 If you work for a company involved in battery collection, recycling, or disposal, or handle other hazardous materials, and want to explore how we can assist you within the LIFE Fit for REACH-2 project – fill out the questionnaire, and we will contact you immediately. 🌱💚

#Batteries #Recycling #Environment #Ecology #WasteManagement #ZeroWaste #FitforREACH #LIFE

References:

  1. 300Gospodarka. “Wieczne chemikalia w bateriach są zagrożeniem dla środowiska. Są nowe badania.” 14 lutego 2025. Dostęp: https://300gospodarka.pl/news/wieczne-chemikalia-w-bateriach-sa-zagrozeniem-dla-srodowiska-sa-nowe-badania
  2. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol. 2021 Apr 13;12:643972. https://doi.org/10.3389/fphar.2021.643972
  3. Bernardes, Ana M., Denise C. R. Espinosa, and Jorge A. S. Tenório. “Recycling of batteries: a review of current processes and technologies.” Journal of Power Sources 130, no. 1-2 (2004): 291-298. https://doi.org/10.1016/j.jpowsour.2003.12.026
  4. Denkhaus, E, and Salnikow K. “Nickel essentiality, toxicity, and carcinogenicity.” Critical Reviews in Oncology/Hematology 42, no. 1 (2002): 35-56. https://doi.org/10.1016/S1040-8428(01)00214-1
  5. Eko Bez Kantów. “Zaskakujący strach Polaków przed bateriami.” Dostęp: https://ekobezkantow.pl/blog/czy-baterie-sa-szkodliwe/
  6. European Commission. “Battery Waste Management.” 2021. https://ec.europa.eu/environment/waste/batteries/
  7. European Environment Agency. ” Emerging waste streams: Opportunities and challenges of the clean-energy transition from a circular economy perspective” EEA Report 2021. Kopenhaga: EEA, 2021. Dostęp: https://www.eea.europa.eu/publications/emerging-waste-streams-opportunities-and  
  8. Environmental Resources Management (ERM), “Battery Waste Management Life Cycle Assessment”, study on behalf of DEFRA, Final report, October 2006 https://www.epbaeurope.net/assets/resources/090607_2006_Oct.pdf
  9. Fundacja Odzyskaj Środowisko. “Substancje niebezpieczne w bateriach i akumulatorach.” Szkolne Centrum Recyklingu, 22 sierpnia 2024. Dostęp: https://szkolnecentrumrecyklingu.pl/2024/08/22/substancje-niebezpieczne-w-bateriach-i-akumulatorach/
  10. Główny Inspektorat Ochrony Środowiska. “Raport o stanie środowiska w Polsce 2023.” Warszawa: GIOŚ, 2023. Dostęp: https://www.gios.gov.pl/pl/stan-srodowiska/raporty-o-stanie-srodowiska
  11. International Agency for Research on Cancer (IARC). ” Arsenic, Metals, Fibres, and Dusts.” IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 100C, 2012. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Arsenic-Metals-Fibres-And-Dusts-2012
  12. Jensen, P., Menné, T., and Johansen J.D. “Systemic contact dermatitis after oral exposure to nickel: a review with a modified meta-analysis.” Contact Dermatitis 54, no. 2 (2006): 79-86. https://doi.org/10.1111/j.0105-1873.2006.00773.x
  13. Lai, X.; Yao, J.; Jin, C.; Feng, X.; Wang, H.; Xu, C.; Zheng, Y. “A Review of Lithium-Ion Battery Failure Hazards: Test Standards, Accident Analysis, and Safety Suggestions”. Batteries 2022, 8, 248. https://doi.org/10.3390/batteries8110248
  14. Nriagu, Jerome O. “A global assessment of natural sources of atmospheric trace metals.” Nature 338, no. 6210 (1989): 47-49. https://doi.org/10.1038/338047a0
  15. Renovables Verdes. “Jak bardzo baterie zanieczyszczają środowisko i jak tego uniknąć: wszystko, co musisz wiedzieć.” Dostęp: https://pl.renovablesverdes.com/jak-bardzo-zanieczyszczaj%C4%85-baterie/
  16. Tarascon, Jean-Marie, and Michel Armand. “Issues and challenges facing rechargeable lithium batteries.” Nature 414, no. 6861 (2001): 359-367. https://doi.org/10.1038/35104644
  17. Thyssen, J. P., and Menné T. “Metal allergy—a review on exposures, penetration, genetics, prevalence, and clinical implications.” Chemical Research in Toxicology 23, no. 2 (2010): 309-318. https://doi.org/10.1021/tx9002726
  18. United Nations Environment Programme (UNEP). ” Sustainable Future of E-waste.” 2023. https://www.unep.org/ietc/news/story/sustainable-future-e-waste
  19. United States Environmental Protection Agency (EPA). “Health Effects of Exposures to Mercury.” EPA, 2024. https://www.epa.gov/mercury/health-effects-exposures-mercury
  20. World Health Organization. “Lead poisoning and health.” WHO Fact Sheets, 2021. https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health
  21. Yang et al.,”On the sustainability of lithium ion battery industry – a review and perspective”. Energy Storage Mater. (2021) https://www.sciencedirect.com/science/article/pii/S2405829720304827